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This paper presents dynamic modeling and adaptive control of a stratospheric airship. In 

spite of many progresses, there are still fundamental challenges in this field of study. In the 

present paper, first the dynamic model of fully-actuated stratospheric airship with 6-DOF 

has expressed by the generalized coordinates. With consideration of uncertainties in inertial 

parameters, based on adaptive inverse dynamic control, first inertial parameters are 

estimated online by using linear parameterization and gradient update law. Later on by 

designing movement algorithm based on passivity, control law is deduced and adaptive and 

robust control methods based on passivity are applied for controlling of the airship. The 

stability of the closed loop control system is proved using the Lyapunov stability theory.

Comparison between the Simulation results of the both methods in tracking of the desired 

time-dependent variable path is shown. 

1. Introduction 

Airships are light vehicles which the buoyant force 

makes them to float in the air, hence, they are large and they 

move slowly. Also, they possess flight controls and 

propulsion force supply motors. 

As height from the ground increases, there is an 

atmospheric classification in which some parameters are of 

great importance.Troposphere is the lowest layer of 

atmosphere which is consisted of smaller layers. The 

difference between this layer and others is that the whole 

volume of water vapor of the Earth’s atmosphere is 

contained in this layer. Accordingly, many of atmospheric 

phenomena that are related to moisture and crucial to 

weather condition (such as clouds, rain, snow, mist and 

thunder), take place in this layer. Thermal source of 

troposphere is the energy emitted from the ground; 

therefore, as altitude increases, the temperature decreases. 

Thickness of troposphere adheres to different thermal 

conditions in different geographical latitudes. This 

thickness ranges from 17 km to 18 km in the equator and 10 

km to 11 km in temperate regions and 7 km to 8 km in the 

poles. 

The stratosphere is above the troposphere and its mean 

thickness is about 23 km. In its first 3 km, the temperature 

is constant but at higher parts the temperature increases as 

altitude rises. In stratosphere clouds do not form very often. 

This layer is the safest layer of the atmosphere and has the 
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most proper weather condition for airship to function. In this 

layer wind moves slowly; hence, many scientists have tried 

so much to develop airships to operate in this layer. In this 

height from the ground, airships have more advantageous 

than other aerial objects and satellites in doing scientific 

researches, online monitoring, carrying load, etc. 

Controlling airships in stratosphere is an issue that has 

vital importance in the development of these vehicles. In the 

study of control of airships, control methods such as PID for 

controlling longitudinal velocity and PD for controlling 

altitude and orientation of airships have been used [1]. The 

linear control theory for stability control of airships in [2] 

and feedback control in [3] have been studied. In fact, these 

methods are viable exclusively to linearized model of the 

airship and around the equilibrium point. The inverse 

dynamic for autonomous airships are utilized based on non-

linear model [4]. When implementing this method, it is 

essential to have feed-forward acceleration and the inertia 

matrix reversible. To have a breakthrough in facing these 

two issues, dynamic control is introduced based on 

passivity. These techniques are solely for fully-actuated 

airships. This means that the stability of closed-loop system 

is not guaranteed for under-actuated airships [5, 6]. 

Although there are many advanced control schemes like 

sliding mode control [7], optimal control [8], model 

predictive control [9] and etc.  that can be implemented on 

the airship model, but because of the special dynamic 

behavior of the airship, adaptive and robust control methods 
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based on passivity are used in this paper for fully-actuated 

dynamic model with 6-DOF and with flight controls of 

rudders and elevators and actuators which are fixed under 

the airbone. 

2. Airship Model 

The simulated model of this study is shown in Figure 1. 

 
Figure 1. Model of stratospheric airship 

As it is shown in Figure 1, the model of the airship has 

an elliptical volume. Moreover, the airship’s buoyant force 

is produced by helium. Dynamic flight controls such as 

elevators and rudders are attached to its flight tail. It is 

assumed that both upper and lower rudders move 

simultaneously; also, both left and right elevators move 

together. The effects of these deviations are defined as 𝑢𝑔 ≜
{𝛿𝑅𝑈𝐷  , 𝛿𝐸𝐿𝑉} and the vector of control forces provided by 

motors is 𝑢𝐹. Control input is defined as 𝑢 = [𝑢𝐹  , 𝑢𝛿]
𝑇 and 

is expressed by relation (1). 

𝑢 = [𝐹𝑇,𝐿𝑐𝜇𝑙 , 𝐹𝑇,𝑅𝑐𝜇𝑅 , 𝐹𝑇,𝐿𝑠𝜇𝑙 , 𝐹𝑇,𝑅𝑠𝜇𝑅 , 𝛿𝐸𝐿𝑉𝐿 , 𝛿𝐸𝐿𝑉𝑅]
𝑇
 (1) 

where𝐹𝑇,𝐿 and 𝐹𝑇,𝑅 are motor forces and 𝜇𝐿 and 𝜇𝑅 are 

rotational angles of left and right impellers with respect to 

y-axis of the frame attached to the body. 

As shown in Figure 1, the inertia frame with its origin 

𝑂𝑔 is placed on a fixed point on the ground. The axis 𝑂𝑔𝑥𝑔 

is pointed toward north and the axis 𝑂𝑔𝑧𝑔 is toward the core 

of the Earth and the axis 𝑂𝑔𝑦𝑔 is toward east. The frame 

attached to body with its origin 𝑂 is fixed on the center of 

volume of the airship. The axis 𝑂𝑥 is toward the nose and 

the axis 𝑂𝑧 is perpendicular to the former and toward down-

side and the axis 𝑂𝑦 can be discovered using right hand rule. 

The position and orientation of the airship are indicated by 

휁 = [𝑥𝑔, 𝑦𝑔, 𝑧𝑔]
𝑇
 and Euler angles 𝛾 = [𝜑, 휃, 𝜓]𝑇 in inertia 

frame, respectively. Moreover, the linear and angular 

velocities of the airship are defined by 𝑣 = [𝑢, 𝑣, 𝑤]𝑇 and 

𝜔 = [𝑝, 𝑞, 𝑟]𝑇 in the frame attached to the body, 

respectively. Since the structure of the airship around the 

transversal plane is symmetrical, the y coordinate of center 

of mass and the inertia products are 𝑦𝑐𝑔 = 0and {𝐼𝑥𝑦 , 𝐼𝑦𝑧} =

0, respectively. 

When modeling airships, generally, there are some 

assumptions made to ease the process. Similar to [11], these 

assumptions in this paper are as following 

 Airship’s body has a solid structure, so it is possible 

to neglect the aero-elastic effects. 

 The center of mass and the center of buoyancy are 

coincided with. 

 Because of minor effect of Roll angle, the 

movement is considered horizontally and taking 

place in the xy-plane. 

The kinematic equation of the position is defined by Eq. 

(2) as below 

휁̇ = [

𝑐휃𝑐𝜓 𝑠휃𝑐𝜓𝑠𝜑 − 𝑠𝜓𝑐𝜑 𝑠휃𝑐𝜓𝑐𝜑 + 𝑠𝜓𝑠𝜑
𝑐휃𝑠𝜓 𝑠휃𝑐𝜓𝑠𝜑 + 𝑐𝜓𝑐𝜑 𝑠휃𝑐𝜓𝑐𝜑 − 𝑐𝜓𝑠𝜑
−𝑠휃 𝑐휃𝑠𝜑 𝑐휃𝑐𝜑

] [
𝑢
𝑣
𝑤

] 

   ≜ 𝑅𝑏(𝛾)𝑣 

(2) 

The kinematic equation of orientation is defined by Eq. 

(3) as 

Finally, the dynamic equation of movement is defined 

by Eq. (4) as 

  (4) �̅� [
�̇�
�̇�
] = �̅� + �̅� + �̅� [

𝗎𝐹

𝗎𝛿
] 

where 

 

 

 

�̅� =

[
 
 
 
 
 𝐼𝑥

0
−𝐼𝑥𝑧

0
−𝑚𝑧𝑐𝑔

0

0
𝐼𝑦 + 𝜌∇𝑘3

0
𝑚𝑧𝑐𝑔

0
−𝑚𝑥𝑐𝑔

−𝐼𝑥𝑧

0
𝐼𝑧 + 𝜌∇𝑘3

0
𝑚𝑥𝑐𝑔

0

0
𝑚𝑧𝑐𝑔

0
𝑚 + 𝜌∇𝑘1

0
0

−𝑚𝑧𝑐𝑔

0
𝑚𝑥𝑐𝑔

0
𝑚 + 𝜌∇𝑘2

0

0
−𝑚𝑥𝑐𝑔

0
0
0

𝑚 + 𝜌∇𝑘2]
 
 
 
 
 

 

 

𝑁

=

[
 
 
 
 
 
 
 

−(𝐼𝑧 − 𝐼𝑦)𝑞𝑟 + 𝐼𝑥𝑧𝑝𝑞 + 𝑚𝑧𝑐𝑔(𝑢𝑟 − 𝑤𝑝) + 𝐿𝑎

−(𝐼𝑥 − 𝐼𝑦 − 𝜌∇𝑘3)𝑝𝑟−𝐼𝑥𝑧(𝑝
2 − 𝑟2) − 𝑚𝑧𝑐𝑔(𝑤𝑝 − 𝑣𝑟) + 𝑚𝑥𝑐𝑔(𝑣𝑝 − 𝑢𝑞) + 𝑀𝑎

−(𝐼𝑦 + 𝜌∇𝑘3 − 𝐼𝑥)𝑝𝑞−𝐼𝑥𝑧𝑞𝑟 − 𝑚𝑥𝑐𝑔(𝑢𝑟 − 𝑤𝑝) + 𝑁𝑎

−(𝑚 + 𝜌∇𝑘2)(𝑤𝑝 − 𝑣𝑟) − 𝑚𝑧𝑐𝑔𝑝𝑟 + 𝑚𝑥𝑐𝑔(𝑞2 + 𝑟2) + 𝑋𝑎

(𝑚 + 𝜌∇𝑘2)𝑤𝑝 − (𝑚 + 𝜌∇𝑘1)𝑢𝑟 − 𝑚𝑥𝑐𝑔𝑝𝑞 − 𝑚𝑧𝑐𝑔𝑞𝑟 + 𝑌𝑎

(𝑚 + 𝜌∇𝑘1)𝑢𝑞 − (𝑚 + 𝜌∇𝑘2)𝑣𝑝 − 𝑚𝑥𝑐𝑔𝑟𝑝 + 𝑚𝑥𝑐𝑔(𝑝2 + 𝑞2) + 𝑍𝑎 ]
 
 
 
 
 
 
 

 

 

 

�̅� =

[
 
 
 
 
 
 
 

−𝑧𝑐𝑔𝑚𝑔cos휃sin𝜑

−𝑧𝑐𝑔𝑚𝑔sin휃 − 𝑥𝑐𝑔𝑚𝑔cos휃cos𝜑

𝑥𝑐𝑔𝑚𝑔cos휃sin𝜑

(𝐵𝑔 − 𝑚𝑔)sin휃

−(𝐵𝑔 − 𝑚𝑔)co𝑠휃sin𝜑

−(𝐵𝑔 − 𝑚𝑔)cos휃cos𝜑 ]
 
 
 
 
 
 
 

,     

 
 �̅� =

[
 
 
 
 
 

𝑐𝑜𝑠𝜉
sin𝜉
0

cos𝜉
−sin𝜉

0

0         0    0
0         0    0
1            1    −2𝑄𝐶𝑁4

−𝑧𝑝sin𝜉 −𝑧𝑝sin𝜉 𝑦𝑝     𝑦𝑝         0     

𝑧𝑝cos𝜉
𝑥𝑝sin𝜉 − 𝑦𝑝cos𝜉

𝑧𝑝cos𝜉
𝑥𝑝sin𝜉 + 𝑦𝑝cos𝜉

−𝑥𝑝
0

 −𝑥𝑝
0

−2𝑄𝐶𝑌4

0

0
−2𝑄𝐶𝑀4

0
0
0

−2𝑄𝐶𝑍4 ]
 
 
 
 
 

 

 

 

In the above expressions, 𝑚, ∇, {𝑥𝑐𝑔 , 𝑧𝑐𝑔}, {𝑘1, 𝑘2, 𝑘3}, 𝜉, 

{𝑥𝑝 , 𝑦𝑝, 𝑧𝑝} and {𝑥𝑝 , −𝑦𝑝, 𝑧𝑝} are the mass of the airship, 

volume of the airship’s airbone, the coordinates of the 

center of mass (CG), inertia coefficient of ellipse for 

calculating the extra mass and the inertia matrix, the open 

angle of left and right impellers, position of right motor and 

(3) �̇� = [

1 𝑡휃𝑠𝜑 𝑡휃𝑐𝜑
0 𝑐𝜑 −𝑠𝜑
0 𝑠𝜑/𝑐휃 𝑐𝜑/𝑐휃

] [
𝑢
𝑣
𝑤

] ≜ 𝑅𝛾(𝛾)ω 
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position of left motor in the frame fastened to the trunk, 

respectively. Then, we have 𝐵𝑔 ≡ 𝑚𝑔, where 𝑔 is the 

gravity acceleration and 𝐵𝑔 is the buoyant force and is 

applied to the center of volume of the airship. 𝑄 =
𝜌 𝑈2 2⁄  is the dynamic pressure, where 𝜌 is the density of 

atmosphere in the flight altitude and 𝑈 = √𝑢2 + 𝑣2 + 𝑤2 is 

the velocity of the airship. 𝐶𝑖4(𝑖 = 𝐿,𝑀,𝑁, 𝑌, 𝑍) are the 

aerodynamic coefficients which are explained in details in 

[14]. Eventually, {𝑋𝑎 , 𝑌𝑎 , 𝑍𝑎} and {𝐿𝑎 , 𝑀𝑎, 𝑁𝑎} are the 

aerodynamic forces and torques in the frame attached to the 

body, respectively, and are described in the appendix. 

By choosing the generalized coordinates (5) and 

considering kinematic Eqs. (2) and (3), Eq. (6) which 

indicates the linear and angular velocities of the airship, is 

obtained. It is assumed that 𝛾 satisfies the conditions |𝜑| <
𝜋 and |휃| < 𝜋 2⁄  for 𝑅𝛾(𝛾) to be reversible, permanently 

[4]. 

(5) 𝜇 = [𝜑, 휃, 𝜓, 𝑥𝑔, 𝑦𝑔 , 𝑧𝑔]
𝑇

 
 

 

where 

S1 = [
1 0 − sθ
0 cφ −sφ s θ
0 − sφ cφ cθ

] 

S2 = [

𝑐휃𝑐𝜓 𝑐휃𝑠𝜓 −𝑠휃
𝑠휃𝑐𝜓𝑠𝜑 − 𝑠𝜓𝑐𝜑 𝑠휃𝑐𝜓𝑠𝜑 + 𝑐𝜓𝑐𝜑 𝑐휃𝑠𝜑
𝑠휃𝑐𝜓𝑐𝜑 + 𝑠𝜓𝑠𝜑 𝑠휃𝑐𝜓𝑐𝜑 − 𝑐𝜓𝑠𝜑 𝑐휃𝑐𝜑

] 

Eq. (7) is derived by getting differentiation from Eq. (6). 

Then, by multiplying �̅� to the both sides of Eq. (7), Eq. (8) 

is obtained. 

(7) �̇� = �̇��̇� + 𝑆�̈� 

(8) �̅��̇� = �̅��̇��̇� + �̅�𝑆�̈� 

The matrix �̇� is obtained according to Eq. (9) and by 

using skew-symmetric matrix 𝑠(𝜔(𝑡)). 

Using Eqs. (4) and (6), movement equation, according 

to generalized coordinates, is obtained as below 

where 𝐵(𝜇) = �̅�, 𝐺(𝜇) = −𝑁 − �̅�, 𝑁(𝜇, �̇�) = �̅��̇� and 

𝐴(𝜇) = �̅�𝑆. Both 𝐴 and 𝑆 are reversible and �̅� is positive 

definition; hence, 𝐴 is reversible and positive definition, 

too. Similarly, as |𝐵(𝜇)| ≠ 0, 𝐵(𝜇) is reversible, too. 

Considering 𝜏 = 𝐵(𝜇)𝑢, Eq. (10) can be rewritten in the 

following form 

(11) A(μ)μ̈ + N(μ, μ̇)μ̇ + G(μ) = τ 

The reverse of model in controlling systems with non-

linear dynamic is a momentous issue, for derivatives of 

system model’s signals are acquired from current and next 

states. The exact derivative of the model needs system’s 

next states, which is not possible. accordingly, we use an 

approximating method named quasi-derivatives. 

In general, there are two types of quasi-derivative; one 

from first order and the other one from second order. Here, 

as in [11], the second order quasi-derivatives are used in 

accordance with Eq. (12) as 

(12) 

�̇�1(𝑡) = 𝑥2(𝑡) 

�̇�2(𝑡) = −𝜔𝑑
2(𝑥1(𝑡) − 𝛿(𝑡)) − 2𝜉𝑑𝜔𝑑𝑥2(𝑡) 

𝜎(𝑡) = 𝑥2(𝑡) 

where 𝜎(𝑡) is 𝛿(𝑡)’s quasi-derivative. 𝜉𝑑equals to constant 

amount of 0.707 and is considered as the optimized 

attenuation coefficient. 𝜔𝑑is the bandwidth that as it gets 

larger the approximation, which here is considered as 0.5, 

becomes better. 

3. Calculation of Desired Values 

In each moment 𝑡, tangent to 휁𝑐  is equal to 휁�̇� =
[�̇�𝑐 , �̇�𝑐 , �̇�𝑐]. 휃𝑐, which obtains using Eq. (13), is the angle 

between 휁�̇� and the 𝑂𝑔𝑥𝑔𝑦𝑔 plane in the inertia frame. Also, 

𝜓𝑐 is the angle between the projection of 휁�̇� on the 𝑂𝑔𝑥𝑔𝑦𝑔 

plane and 𝑂𝑔𝑥𝑔 axis. So  

The linear velocities of the airship acquires from 

position’s kinematic Eq. (2), in accordance with Eq. (15) as 

(15) 𝑣𝑐 = 𝑅𝑏
−1(𝛾𝑐)휁�̇� 

where 휁�̇� is obtained from 휁𝑐  and quasi-derivatives of Eq. 

(12). The angular velocities are acheived from orientation’s 

kinematic, Eq. (3), in according to the following relation 

(16) 𝜔𝑐 = 𝑅𝛾
−1(𝛾𝑐)�̇�𝑐 

in which �̇�𝑐 gets from 𝛾𝑐 and quasi-derivatives of Eq. (12). 

4. Control 

In this section, the adaptive inverse dynamic scheme is 

described. By considering the inertia parameters vector 휂 =

[𝐼𝑥 , 𝐼𝑦 , 𝐼𝑧 , 𝐼𝑥𝑧 , 𝑚𝑧𝑐𝑔]
𝑇
 and the inertia parameters vector 휂̂ =

[𝐼𝑥 , 𝐼𝑦 , 𝐼𝑧 , 𝐼𝑥𝑧 , 𝑚�̂�𝑐𝑔]
𝑇
, as an approximation of 휂, the non-

linear feedback control law is obtained as  

where �̂�, �̂� and �̂� in terms 휂 are approximations of 𝐺, 𝑁 

and 𝐴, respectively. By substituting Eq. (17) into Eq. (16) 

and then substituting Eq. (18) in it and using linear 

parameterization, Eq. (19) is achieved. 

(18) 𝑎𝑥 = �̈�𝑑 − 𝐾0(𝜇 − 𝜇𝑑) − 𝐾1(�̇� − �̇�𝑑) 

(19) �̈̃� + 𝐾1�̇̃� + 𝐾0�̃� = �̂�(μ)−1𝑌(𝜇, �̇�, �̈�)휂̃ 

where 𝑌 is the regressor matrix. Eq. (19) transforms into 

(20) in state space. 

  (6) 
𝑉 = [

𝑆1 𝑂3

𝑂3 𝑆2
] �̇� ≜ 𝑆�̇� 

(9) s(ω(t)) = [

0 −r q
r 0 −p

−q p 0
] 

 (10) A(μ)μ̈ + N(μ, μ̇)μ̇ + G(μ) = B(μ)u 

(13) 휃𝑐 = arctan2(−�̇�𝑐, √�̇�𝑐 + �̇�𝑐) 

(14) 𝜓𝑐 = arctan2(�̇�𝑐, �̇�𝑐) 

 (17) 𝑢 = 𝐵−1(𝜇)[�̂�(μ)𝑎𝑥 + �̂�(μ, μ̇)𝜇 + �̂�(μ)] 
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(20) �̇� = 𝐴𝑒 + 𝐵𝜱휂̃ 

where 

 𝐴 = [
𝑂6 𝐼6

−𝐾0 −𝐾1
], 𝐵 = [

𝑂6

𝐼6
], Φ = �̂�(𝜇)−1𝑌(𝜇, �̇�, �̈�)  

Also, 𝐾0 and 𝐾1 are diagonal matrices. Assuming that 𝑃 

is a positive definition unique symmetric matrix that 

satisfies Lyapunov Eq. (21), parameter update law is chosen 

as Eq. (22) [6]. 

4.1. Control Based on Passivity 

In this section, as opposed to adaptive inverse dynamic 

method, the system remains non-linear and the control law 

is chosen as expression (23). 

where 

 

Here, 𝐾𝑑 and Λ are constant positive definition diagonal 

matrices. To avoid convoluted calculations, 𝑆𝑇 is multiplied 

to the left side of matrices 𝐴, 𝑁, 𝐺 and 𝐵 and the control 

law is expressed in (24a) and (24b). 

(24a) τ = A(μ)�̈�r + N(μ, μ̇)μ̇r + G(μ) + 𝑆−𝑇Kd(μ̇r − μ̇) 

(24b) 𝑢 = 𝐵−1(𝜇)[A(μ)�̈�𝑟 + N(μ, μ̇)μ̇r + G(μ) 

 + 𝑆−𝑇Kd(μ̇r − μ̇) 

By equalizing Eqs. (16) and (24), Eq. (25), which is still 

a coupled non-linear system, will be resulted as 

 

(25) A(μ)ṙ + N(μ, μ̇)r + G(μ) + S−TKdr = 0 

4.2. Designing Adaptive Control Law Based on Passivity 

In this section, as before, by assuming uncertainties in 

inertia parameters, the control law can be defined by Eqs. 

(26a) and (26b) as 

(26a) τ = �̂�(μ)�̈�𝑟 + �̂�(μ, μ̇)μ̇r + Ĝ(μ) 

+𝑆−𝑇Kd(μ̇r − μ̇) 

   

(26b)  

𝑢 = 𝐵−1(𝜇)[�̂�(μ)�̈�𝑟 + �̂�(μ, μ̇)μ̇r + �̂�(μ) 

   +𝑆−𝑇Kd(μ̇r − μ̇)]  

Substituting Eq. (26) into Eq. (11), the following 

relation (27) is obtained as  

 A(μ)ṙ + N(μ, μ̇)𝑟 + G(μ) + S−TKdr 

 = Ã(μ, η − 휂̂)μ̈r + Ñ(μ, η − η̂)μ̇r + G̃(μ, η − η̂) 

(27) = Â(μ, �̈�𝑟 , 휂̃)�̈�𝑟 + N̂(μ, 𝜇,̇ μ̇𝑟 , 휂̃)μ̇𝑟 + Ĝ(μ, 휂̃) 

 = [Â̂(μ, �̈�𝑟) + N̂̂(μ, 𝜇,̇ μ̇𝑟) + Ĝ̂(μ)] 휂̃ 

 ≜ Y(μ, 𝜇,̇ μ̇𝑟 , �̈�𝑟)휂̃ 

in which �̃� = 𝐴 − �̂�, 𝑁 = 𝑁 − �̂�, �̃� = 𝐺 − �̂�, 휂̃ = 휂 − 휂̂, 

휂̂ ≠ 휂, �̃� ≠ 𝐴, 𝑁 ≠ 0 and �̃� ≠ 0. Thus, from dynamic Eq. 

(27) and by using five-dimension parametric space to 

approximate 휂̂ and also using update gradient law, Eq. (28) 

is developed as 

(28) 휂̇̂ = 𝛤−1𝑌𝑇𝑆𝑟 

where 𝛤 is a positive definit matrix. 

4.3. Designing Robust Control Law Based on Passivity 

In the current section, akin to the previous section, by 

assuming uncertainties in inertia parameters, the control law 

is considered identical with Eqs. (26a) and (26b). The 

solitary contrast is that in this one we have 휂̂ as below 

(29) 휂̃ = 휂0 + 𝛿휂 

where 휂0 and 𝛿휂 are nominal parameter vector and 

additional controlling term, respectively. By considering 

휂̃ = 휂0 − 휂, which is a constant vector and indicates 

parametric uncertainty in system, Eq. (27) can be written in 

the following form  

(30) A(μ)ṙ + N(μ, μ̇)r + G(μ) + S−TKdr
= Y(μ, μ,̇ μ̇r, μ̈r)(η̃ + δη) 

Considering the constant bound 𝜌𝑖 ≥ 0 separately for 

each inertia parameter as in Eq. (31), the control law of Eq. 

(32) can be achieved as 

(31) |휂̃𝑖| ≤ 𝜌𝑖,   𝑖 = 1,… ,5 
  

(32) 
δη = {

−𝜌𝑖𝜉𝑖 |𝜉𝑖|⁄ if |𝜉𝑖| > εi

−𝜌𝑖𝜉𝑖 εi⁄ if |𝜉𝑖| ≤ εi
 

where 𝜉𝑖s indicate elements of matrix 𝑌𝑇𝑟 and 휀𝑖s are 

positive constants. 

5. Stability Analysis 

In the adaptive inverse dynamic by choosing the 

Lyapunov function as  

Its derivative �̇�(𝑡) is calculated as below in accordance 

to Eq. (22) 

It can be concluded from Eq. (34) that the tracking error 

converges to zero asymptotically and the error of 

approximating parameters remains bounded. 

In the method of control based on passivity the 

candidate Lyapunov function will be chosen as (35). 

The derivative of candidate function along the path of 

closed-loop system tallies Eq. (36) as 

(21) 𝐴𝑇𝑃 + 𝑃𝐴 = −𝑄 

(22) 휂̇̂ = −𝛤−1𝜱𝑇𝐵𝑇𝑃𝑒 

(23) 𝜏 = 𝐴(𝜇)𝑎 + 𝑁(𝜇, �̇�)𝑣 + 𝐺(𝜇) + 𝐾𝑑𝑟 

e = μd − μ 

 

𝑣 = μ̇r = μd + 𝛬(𝜇𝑑 − 𝜇) = μ̇𝑑 + 𝛬𝑒 

 

a = v̇ = μ̈r = μ̈d + Λ(μ̇d − μ̇) = μ̈d + Λė 

 
r = v − μ̇ = μ̇r − μ̇ 

(33) 𝐿(𝑡) = 𝑒𝑡𝑄𝑒 + 휃̃𝑇𝛤휃̃ 

(34) �̇�(𝑡) = 𝑒𝑡𝑄𝑒 + 2휃̃𝑇 {𝜱𝑇𝐵𝑇𝑃𝑒 + 𝛤휃̇̂} = −𝑒𝑇𝑄𝑒 
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(36) 

�̇�(𝑡) = 𝑟𝑇𝑆𝑇�̅��̇�𝑟 + 𝑟𝑇𝑆𝑇�̅�𝑆�̇� + 휂̃𝑇𝛤휂̇̃ 
         = 𝑟𝑇𝑆𝑇(�̅��̇�𝑟 + �̅�𝑆�̇�) 
         = 𝑟𝑇𝑆𝑇(𝑁𝑟 + 𝐴�̇�) + 휂̃𝑇𝛤휂̇̃ 
         = 𝑟𝑇𝑆𝑇(𝑁𝑟 − 𝑁𝑟 − 𝑆−𝑇Kdr + Y휂̃)

+ 휂̃𝑇𝛤휂̇̃ 
         = −𝑟𝑇Kdr ≤ 0 

It can be seen that 𝐿(𝑡) is bounded continually due to 

Eq. (36) and tracking the path asymptotically is guaranteed. 

In the method of robust control based on passivity, by 

choosing candidate Lyapunov function of Eq. (37) and 

doing simple calculations �̇�(𝑡) will be acquired as  

(37) 
𝐿(𝑡) =

1

2
[𝑟𝑇𝑆𝑇�̅�𝑆𝑟 + �̃�𝑇𝛬𝑆−𝑇Kd�̃�] 

(38) �̇�(𝑡) = −𝑒𝑇𝑄𝑒 + 𝑟𝑇𝑌(휂̃ + 𝛿휂) 

By considering [13], it can be exposed that Lyapunov 

function satisfies the relation �̇�(𝑡) < 0 for Eq. (39) as 

(39) ‖𝑒‖ > (
1

𝜆𝑚𝑖𝑛(𝑄)
∑

𝜌𝑖εi

2

𝑝

𝑖=1

)

1 2⁄

 

in which 𝜆𝑚𝑖𝑛(𝑄) is the minimum eigenvalue of 𝑄. 

6. Results and Discussion 

The desired path for simulating trajectory tracking in an 

ascending spiral way is chosen as 휁𝑐 =
[500 sin(0.01𝑡) , 500 cos(0.01𝑡) , 0.1𝑡 + 20000]𝑇 .  The 

direction of 𝑧-axis of the framed attached to the ground has 

been defined downward and is opposing to direction of 

height; consequently, ℎ = −𝑧 has been utilized instead of 𝑧. 

Therefore, we have 𝑧𝑐 = −ℎ𝑐. 

Based on the alues of parameters and coefficients of the 

airship (Table 1), the situation and state of the system is 

expressed as 

𝜇0 = [0.1,0,0,0,550,20000]𝑇,𝑉0 = [0,0,0,4,0,0]𝑇 , 

휂0 = [3 × 107, 2.5 × 108, 2.5 × 108, −2 × 104, 2.8 × 105], 

휀 = [10−3, 10−5, 10−6, 0.5 × 10−4, 0.5], 𝛬 = 𝐼6∗6,𝛤 = 𝐼6∗6, 
𝜌 = [2 × 107, 0.4 × 108, 0.4 × 108, 4 × 104, 5.6 × 105] 

The gains of the adaptive inverse dynamic method are 

defined as  

𝐾0 = 𝑑𝑖𝑎𝑔{2,3,2,1,1,1} , 𝐾1 = 𝑑𝑖𝑎𝑔{1,1,1,10,10,10} 

The gain of the adaptive and robust control method 

based on passivity has been defined as below 

𝐾0 = 𝑑𝑖𝑎𝑔{108, 109, 108, 104, 105, 106} 

According to the section 4 desired values of pitch and 

yaw can be calculated using the equations below 

휃𝑐 = arctan2(0.1,5) = 0.02 

𝜓𝑐 = arctan2(−5 × sin(0.01 × 𝑡) , 5 × cos(0.01 × 𝑡)) 

𝜑𝑐 = 0 

The simulation results of orientation of the airship are 

shown in Figures 2 to 4. 

Table 1. Values of parameters and coefficients of the airship 

Parameters [5] Values 

𝑚 5.6 × 104(𝑘𝑔) 

∇ 7.4 × 105(𝑚3) 

𝜌 0.089 (𝑘𝑔𝑚−3) 

𝜉 𝜋 6⁄ (𝑟𝑎𝑑) 

{𝑥𝑐𝑔 , 𝑧𝑐𝑔} {0,15}(𝑚) 

𝐼𝑥 5 × 107(𝑘𝑔𝑚2) 

𝐼𝑦 2.9 × 108(𝑘𝑔𝑚2) 

𝐼𝑧 2.9 × 108(𝑘𝑔𝑚2) 

𝐼𝑥𝑧 −6 × 104(𝑘𝑔𝑚2) 

𝑘1 0.105 

𝑘2 0.825 

𝑘3 0.52 

𝐶𝑌4 −657 

𝐶𝑍4 −657 

𝐶𝑀4 −7.7 × 104 

𝐶𝑁4 −𝐶𝑀4 

 

 

 

Figure 2. Roll angle 

 

Figure 3. Pitch angle 

 

Figure 4. Yaw angle 
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(35) 𝐿(𝑡) =
1

2
[𝑟𝑇𝑆𝑇�̅�𝑆𝑟

+ 휂̃𝑇𝛤휂̃] 



Miripour Fard et al. - Comput. Res.Prog. Appl. Sci. Eng. Vol. 02(02), 55-64, April 2016 

 
60 

Simulation results of the linear and angular velocities’ 

error, trajectory tracking and motors’ torques are expressed 

by Figures 5 to 13, respectively. 

 

Figure 5. Error of linear velocity along x 

 

 

Figure 6. Error of linear velocity along y 
 

 

Figure 7. Error of linear velocity along z 
 

 

Figure 8. Error of angular velocity about x 
 

 

 

 

 

 

 

 

Figure 9. Error of angular velocity about y 
 

 

Figure 10. Error of angular velocity about z 
 

 
 

 

 

Figure 11. Trajectory tracking of stratospheric airship 
 

 

Figure 12. Torque of the left thrust 

Time (s)

u
_
e

(m
/s

)

0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

1

1.2

u_e-AID

u_e-PBA

u_e-PBR

Time (s)

v_
e

(m
/s

)

0 10 20 30 40 50

-15

-10

-5

0

v_e-AID

v_e-PBA

v_e-PBR

Time (s)

w
_
e

(m
/s

)

0 10 20 30 40 50
-0.8

-0.6

-0.4

-0.2

0

0.2

w_e-AID

w_e-PBA

w_e-PBR

Time (s)

p
_

e
(

ra
d
/s

)

0 5 10 15 20 25 30

-0.08

-0.06

-0.04

-0.02

0

0.02

p_e-AID

p_e-PBA

p_e-PBR

Time (s)

q
_
e

(r
ad

/s
)

0 5 10 15 20 25 30

-0.01

0

0.01

0.02

q_e-AID

q_e-PBA

q_e-PBR

Time (s)

r_
e

(r
ad

/s
)

0 5 10 15 20 25 30

-0.01

-0.008

-0.006

-0.004

-0.002

0

r_e-AID

r_e-PBA

r_e-PBR

x (m)

-400

-200

0

200

400

y (m)

-400
-200

0
200

400
600

z
(m

)
2
0
0
0
0

2
0
0
2
0

2
0
0
4
0

2
0
0
6
0

2
0
0
8
0

Time (s)


(

N
.m

)

0 5 10 15 20 25 30

2E+06

4E+06

6E+06

8E+06

1E+07

1.2E+07

1.4E+07

1.6E+07

1.8E+07

AID

PBR

PBA



Miripour Fard et al. - Comput. Res.Prog. Appl. Sci. Eng. Vol. 02(02), 55-64, April 2016 

 
61 

 

Figure 13. Torque of the right thrust 
 

The results from simulation for estimating inertia 

parameters in adaptive control method based on passivity, 

adaptive inverse dynamic method and robust control 

method based on passivity are shown in Figures 14 to 18, 

19 to 21 and 22 to 26, respectively. 

As parameters’ fluctuations in the first two methods are 

trivial, these diagrams show variations of them versus their 

initial values. Beside, time axis has been scaled in terms of 

logarithm to help to expose the changes better and clearer. 

 

 

Figure 14. Variations of inertia parameter 𝐼𝑥 

 

 

 

 

Figure 15. Variations of inertia parameter 𝐼𝑦 
 

 

Figure 16. Variations of inertia parameter 𝐼𝑧 

 

 

Figure 17. Variations of inertia parameter 𝐼𝑥𝑧 
 

 

Figure 18. Variations of inertia parameter 𝑚𝑧𝑐𝑔 
 

 

Figure 19. Variations of inertia parameter 𝐼𝑥, 𝐼𝑦, 𝐼𝑧 
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Figure 20. Variations of inertia parameter 𝐼𝑥𝑧 

 

 

Figure22. Variations of inertia parameter 𝐼𝑥 
 

 

 

Figure 23. Variations of inertia parameter 𝐼𝑦 

 

Figure 24. Variations of inertia parameter 𝐼𝑧 

 

Figure 25. Variations of inertia parameter 𝐼𝑥𝑧 
 

 

Figure 26. Variations of inertia parameter 𝑚𝑧𝑐𝑔 

7. Conclusion 
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results revealed that the closed-loop system is 

asymptotically stable. This means that asymptotic 

convergence of tracking the path, after transient state, can 

be guaranteed for spiral path. Both adaptive and robust 

control methods, when comparing all three methods, give 

almost identical results and in comparison with adaptive 

inverse dynamic have smaller settling time and reach 

stability faster, respectively, but have more overshoot is a 

fact.  
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Figure 21. Variations of inertia parameter 𝑚𝑧𝑐𝑔 
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Also, according to the results concluded from estimating 

inertia parameters it is clear that all of them are stable in all 

three methods. In adaptive control based on passivity, 

parameters are subject to little fluctuations; however, they 

do not converge to the exact right value. Moreover, in 

adaptive inverse dynamic method just two of those 

parameters change, while others remain the same. As it can 

be seen in [5] and [13], since the inertia parameters have 

great values the convergence step becomes almost like a 

forward line, although parameters do not converge to their 

correct values. Even though in robust control technique 

parameters converge to their right values in transient state, 

they return to their initial values in the end. 

This should be noted that the methods applied to fully-

actuated airship are feasible; nevertheless, under-actuated 

airships have to be studied much more. 

Appendix 

Aerodynamic forces and torques are defined as below 

[6]. 

 
Sign content 

𝐵𝑔 Buoyant force (N) 

𝐹𝑇,𝐿 Left thrust force (N) 

𝐹𝑇,𝑅 Right thrust force (N) 

𝑔 Gravity acceleration (ms−2) 
{𝑘1, 𝑘2, 𝑘3} Inertia coefficient 

{𝐿𝑎, 𝑀𝑎, 𝑁𝑎} Aerodynamic torques 

𝑚 Mass of airship (kg) 

𝑄 Dynamic pressure (kgm−1s−2) 

𝑢𝐹 , 𝑢𝛿 Control inputs 

𝑣 Linear velocities of the airship (m s⁄ ) 
{𝑋𝑎, 𝑌𝑎, 𝑍𝑎} Aerodynamic forces 

{𝑥𝑐𝑔, 𝑧𝑐𝑔} Coordinates of center of mass (m) 

{𝑥𝑝, 𝑦𝑝, 𝑧𝑝} The position of motors (m) 

∇ Volume of airship’s trunk (m3) 

Greece signs 

𝛾 Airship’s orientation (rad) 

𝛿𝐸𝐿𝑉 , 𝛿𝑅𝑈𝐷 Elevators’ and rudders’ deviations (rad) 

휁 Airship’s position (m) 

휂 Inertia parameters 

𝜇 Generalized coordinates 

𝜇𝐿 Left impeller’s rotational angle (rad) 

𝜇𝑅 Right impeller’s rotational angle (rad) 

𝜉 Open angle of left and right motors (rad) 

𝜉𝑑𝑖𝑓𝑓 Optimized attenuation coefficient 

𝜌 Atmosphere density in flight attitude (kgm−3) 

𝜌𝑖 Constant bound of inertia parameters 

𝜔 Airship’s angular velocities (rad/s) 

𝜔𝑑𝑖𝑓𝑓  Bandwidth (1/s) 

Indexes 

𝑐 Desired 

𝑐𝑔 Center of mass 

𝑑 Desired 
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